The wave quality of light is the same as that of the electron. The wave determines the probable location of the photon of light when it is detected. The wave character of light is not vibrating stuff like a wave of water but rather a wavelike function encoding information about where you'll find the photon of light once it is detected. Until it reaches the detector plate, like the electron, it is seemingly passing through both slits simultaneously, making its mind up about its location only once it is observed [...].
It's this act of observation that is such a strange feature of quantum physics. Until I ask the detector to pick up where the electron is, the particle should be thought of as probabilistically distributed over space, with a probability described by a mathematical function that has wavelike characteristics. The effect of the two slits on this mathematical wave function alters it in such a way that the electron is forbidden from being located at some points on the detector plate. But when the particle is observed, the die is cast, probabilities disappear, and the particle must decide on a location.
— Marcus du Sautoy
characteristicsdecisiondetected